slrt.net
当前位置:首页 >> ∫x^2Cos3xDx >>

∫x^2Cos3xDx

用两次分步积分法 ∫x^2cos3xdx =1/3∫x^2dsin3x =1/3x^2sin3c-2/3∫xsin3xdx =1/3x^2sin3c+2/3∫xdcos3x =1/3x^2sin3c+2/3xcos3x-2/3∫cos3xdx =1/3x^2sin3c+2/3xcos3x-2/9sin3x+C

两次分部积分即可

(x+sin(x))/(4cos(x)-4) 首先改写降次: xcos^4(x/2)/sin^3(x) = 1/8 xcot(x/2)csc^2(x/2) ... 注:csc(x)=1/sin(x) 换元积分:令u=x/2: dx=2du, ∫ 1/8 xcot(u)csc^2(u) 2du =1/8 * 2 * 2 ∫ ucot(u)csc^2(u) du 然后分部积分, =1/2 u(-1/2cot^2...

第一类换元法就是凑微分法 ∫sinxdx/cos³x =-∫d(cosx)/cos³x =(1/2)∫d(1/cos²x) =(1/2)*(1/cos²x)+C =1/(2cos²x)+C

u=∫e^(2x)cos3xdx =(1/3)∫e^(2x)dsin3x =(1/3)[e^(2x)sin3x-∫sin3xde^(2x)] =(1/3)[e^(2x)sin3x-2∫e^(2x)sin3xdx] =(1/3)[e^(2x)sin3x+(2/3)∫e^(2x)dcos3x] =(1/3){e^(2x)sin3x+(2/3)[e^(2x)cos3x-∫cos3xde^(2x)]} =(1/3){e^(2x)sin3x+(2/3)[e^(...

xsin3x 2cosx 2dx,这中间的运算连接符号时什么?

∫x^2*sin3xdx = -1/3∫x^2dcos3x = -1/3x^2cos3x+2/3∫xcos3xdx = -1/3x^2cos3x+2/9∫xdsin3x = -1/3x^2cos3x+2/9xsin3x-2/9∫sin3xdx = -1/3x^2cos3x+2/9xsin3x+2/27cos3x+C

cosx+3/xdx=1/12x24x254cosx+C ∫x212x22xsinx+3/12x2dx3cos3x-1/2xsinx-3/12x2dcos3x =-3/dx=1/4x212x23cosx34∫x218xsin3x+1/4x2cosx+3/4∫cosxdx24x2∫x2cos3x-1/4∫x23∫sinx32∫xcosxdx+1/sinx3sin3=-1/4x2 =-3/4∫x218xsin3x-1/18∫sin3xdx =-3/sin...

∫cos²(x/2)dx =∫[(1+cosx)/2]dx =1/2∫dx+1/2∫cosxdx =(x+sinx)/2+C

如上图所示。

网站首页 | 网站地图
All rights reserved Powered by www.slrt.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com