这题利用公式求
利用三角函数的积化和差公式即可
积化和差∫sinxsin2xsin3xdx=1/2∫(cosx-cos3x)sin3xdx=1/2∫cosxsin3xdx-1/2∫cos3xsin3xdx=1/4∫(sin2x+sin4x)dx-1/4∫sin6xdx=-1/8cos2x-1/16cos4x+1/24cos6x+C数学软件验算:
n=1时公式成立; 现在假设对n-1公式成立 那么sinx+sin2x+sin3x+……+sinnx=sinx+sin2x+sin3x+……+sin(n-1)x+sinnx =[sin((n-1)x/2)sin(nx/2)]/sin(x/2)+sinnx =[sin((n-1)x/2)sin(nx/2)+sinnxsin(x/2)]/sin(x/2) =sin(nx/2)[sin((nx/2-x/2)+2cos(nx...
∫[sinxsin(3x)]dx =∫½[cos(x-3x)-cos(x+3x)]dx =½∫[cos(-2x)-cos(4x)]dx =½∫[cos(2x)-cos(4x)]dx =½∫cos(2x)dx -½∫cos(4x)dx =¼∫cos(2x)d(2x)-⅛∫cos(4x)d(4x) =-¼sin(2x)+⅛sin(4x)+C 提示:先对
首先,利用两次积化和差公式: sinXsin2Xsin3X =-(1/2)(cos3X-cosX)sin3X =-1/4(sin6X)+1/2(sin4X)+1/2sin(2X) 分别设u1,u2,u3为-1/4(sin6X),1/2(sin4X),1/2sin(2X) 则u1的n阶导数为-1/4(sin(6X+n(π/2))*6^(n).....这个是复合函数求导 同理u2的n阶...